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CHAPTER 12 -- WAVE   MOTION

12.1)  The relationship between a wave's frequency ν , its wavelength λ ,
and its wave velocity v is v = λ ν .  For sound in air, the wave velocity is
approximately v = 330 m/s.  To get the wavelength:

a.)  For ν  = 20 hz:

λ  = v/ ν
   = (330 m/s)/(20 hz)
   = 16.5 meters        (around 50 feet).

Note:  Technically, the units of frequency are seconds-1 and of wavelength
are meters.  The cycles term in the frequency units is a label, being the same for
MKS, CGS, and the English system of units.  This means that by dividing
frequency into velocity we get the units (m/s)/(1/s) = meters.  If you had included
the cycles label, that division would have yielded units of (m/s)/(cycles/s) =
meters/cycle.  There is really nothing wrong with this--it is a literal description of
what the wavelength is (the number of meters there is in one wave--one cycle),
but using it could potentially get you in trouble later.  Best go with seconds-1 for
simplicity.

b.)  For ν  = 20,000 hz:

λ  = v/ ν
    = (330 m/s)/(20,000 hz)
    = .0165 meters    (a little over half an inch).

12.2)
a.)  The sketch is shown on the next page.

b.)  If the first wave has an amplitude of A1 = 1 meter, the second
largest amplitude wave will have an amplitude of approximately A2 = .33

meters and the third approximately A3 = .2 meters.
Note that the largest wave (the first wave as defined above) has one

half-wavelength in the same space that the second wave has 3 half-
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FIGURE I

sum of three waves
                    (you have to eyeball it)

wavelengths and the third wave has 5 half-wavelengths.  That means that
if the first wave has a frequency of ν1 = 1ν, the second wave will have a
frequency of ν2 = 3 ν and the third wave a frequency of ν3 = 5 ν.

Frequency is proportional to the angular frequency.  That means that
if the angular frequency of the first wave is ω 1 = 1 rad/sec, the second
wave's angular frequency will be ω 2 = 3 rad/sec and the third wave's
angular frequency will be ω 3 = 5 rad/sec.
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the series sums to a square wave

FIGURE II

at t = 0, y = 12 sin 25x
   (note that at x=0, y=0)

FIGURE III
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at t = 1, y = 12 sin (25x - .67)
   (note that at x = 0, y is negative)

FIGURE IV
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Putting it all together, remembering that the general algebraic
expression for a sine wave with no phase shift is A sin ω t, we get:

ytot = A1 sin ω1t + A2 sin ω2t + A3 sin ω3t
       =   1 sin t      +  .33 sin 3t   +  .2 sin 5t.
       = (1/1) sin t   +  (1/3) sin 3t  +  (1/5) sin 5t.

c.)  The first six terms of the series
are:

    yt = 1sin 1t + (1/3)sin 3t + (1/5)sin 5t +
      (1/7)sin 7t + (1/9)sin 9t + (1/11)sin 11t.

d.)  The waveform is shown to the
right.  It is called a square wave.

12.3)
a.)  At t = 0:

y = 12 sin (25x - .67(0))
   = 12 sin 25x.

This function is graphed in Figure III to
the right.

  At t = 1 second:

y = 12 sin (25x - .67(1))
   = 12 sin (25x - .67).

This function is graphed in Figure IV to
the right.

b.)  The wave is moving to the right (note that its peaks are further to
the right at t = 1 second than they are at t = 0 seconds).
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c.)  Positive values for the time dependent part of this equation yield
wave motion (in time) to the left (in the negative x direction); negative
values for the time dependent part of this equation yield wave motion to
the right (i.e., in the +x direction), as was pointed out in Part b.

d.)  The angular frequency is .67 rad/sec.  As:

ω  = 2 ν
     ⇒    ν = ω /2

      = (.67 rad/sec)/2
      = .107 Hz.

e.)  The period is:

T = 1/ ν
   = 1/(.107 Hz)
   = 9.35 sec/cycle.

f.)  We know that the wave number is k = 25 m-1.  The wavelength is
related to the wave number by:

k = 2/ λ
     ⇒     λ  = 2/k

        = 2/(25 m-1)
        = .25 meters.

Note:  Just as angular frequency tells you how many radians the wave
sweeps through per unit time at a given point, the wave number tells you how
many radians of wave there are per meter of wave.

Look at the units if this isn't clear.  The equation states that there are (2
radians/wavelength) divided by ( λ  meters of wave per wavelength), or
2/ λ radians per meter of wave.  Put another way, if k = 2 rad/m, we are being
told that one full cycle of wave (i.e., 2 radians worth) spans one meter.

g.)  Wave velocity:

v =  λ ν.
   = (.25 m)(.107 Hz)
   = .02675 m/s.

h.)  The amplitude is 12 meters (by inspection).
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12.4)  We know that the frequency is 225 Hz, the amplitude is .7 meters,
and the wave velocity is 140 m/s.  Knowing the wave velocity, we can write:

v = λ ν
     ⇒     λ  = v/ ν

        = (140 m/s)/(225 Hz)
        = .622 meters.

Traveling waves have a general algebraic expression of:

y = A sin (kx + ω  t)
   = A sin [(2/λ )x + 2 νt]
   = .7 sin [[2/(.622 m)]x + 2(225 Hz)t]
   = .7 sin (10.1x + 1413.7t).

12.5)  Dividing out the coefficient of the α  term to get this equation in the
right form (i.e., the standard simple harmonic motion equation), we get:

α + (3g/2L) θ  = 0.

a.)  The angular frequency for this motion is:

ω  = (3g/2L)1/2

     = [3(9.8 m/s2)/2(.8 m)]1/2

     = 4.29 rad/sec.

Knowing this, we can find the natural frequency-of-oscillation for this
system:

ν = ω /2
    = (4.29 rad/sec)/2
    = .683 Hz.

b.)  The period is:

T = 1/ ν
   = 1/(.683 Hz)
   = 1.46 sec/cycle.

If the frequency (hence period) of the applied force is close to the
natural frequency (hence period) of the system, resonance will occur and
the amplitude of the motion will grow immensely.  If not, the applied force
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node

L

will fight the natural motion and the net effect will be small amplitude
motion.  The period in Part i (1.31 seconds) fits into the latter category;
the period in Part ii (1.47 seconds) fits into the former category.

12.6)  We know ν  = 800 Hz; L = .3 meters; and
there are 5 nodes with one at each end (that is, the
string is split into four sections by the three remaining
nodes).  A sketch of the  system is shown to the right.

To get the velocity, we will use v = λ ν .  We know
ν ; we need λ .  To get it, notice that there are TWO full
wavelengths in the length L.  Mathematically:

2 λ  = L
          = .3 m
    ⇒    λ  = .15 m.

Putting it all together, we get:

v = λ ν
   = (.15 m)(800 Hz)
   = 120 m/s.

12.7)  Calculations for all parts follow the sketches on the next few pages.

a.)  We need a node at both ends and one L/4 units from the left end.
The sine wave on the next page depicts the various possibilities.

b.)  We need a node at the ceiling, an antinode at the free end, and a
node (2/5)L of the way down from the ceiling.  The sine wave on the next
page depicts the various possibilities.

c.)  We need an antinode at the top, a node at the bottom, and a node
at L/3 from the top.  The sine waves on the next two pages depict the
various possibilities (I've pictured the sine wave horizontally for
simplicity).
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first node

 A possible right-end node:  
     As (fd) (#  q wl) = (1/4) (2) = 1/2,
     this waveform will not satisfy
     the inner-node constraint.

"L" corresponding
to lowest frequency
(Note: L = (8/4)     )

       "L" corresponding
 to second lowest frequency
(Note: L = (16/4)     )

"L" corresponding to third lowest frequency
             (Note: L = (24/4)     )

a.)  A possible right-end node:  
     As (fd) (#  q wl) = (1/4) (4) = 1,
     this waveform will not satisfy
     the inner-node constraint.  A possible right-end node:  

     As (fd) (#  q wl) = (1/4) (6) = 3/2,
     this waveform will not satisfy
     the inner-node constraint.

 Fourth possible right-end node:  
     As (fd) (#  q wl) = (1/4) (8) = 2,
     this waveform will satisfy
     the inner-node constraint.

3

2

1

    The fractional distance (fd) between the
 left-end node and the one interior node is 1/4.

Call the number of quarter-
     wavelengths "# q wl"

Note:

first node

b.)     The fractional distance (fd) between the
 top node and the one interior node is 2/5.

Call the number of quarter-
     wavelengths "# q wl"

Note:

 A possible right-end antinode:  
     As (fd) (#  q wl) = (2/5) (1) = 2/5,
     this waveform will not satisfy
     the inner-node constraint.

 A possible right-end antinode:  
     As (fd) (#  q wl) = (2/5) (3) = 6/5,
     this waveform will not satisfy
     the inner-node constraint.

 A possible right-end antinode:  
     As (fd) (#  q wl) = (2/5) (5) = 2,
     this waveform will satisfy
     the inner-node constraint.

"L" corresponding
to lowest frequency
(Note: L = (5/4)     )

"L" corresponding to third lowest frequency
             (Note: L = (25/4)     )3

       "L" corresponding
 to second lowest frequency
(Note: L = (15/4)     )2

1
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     first 
anti-node

c.)

 A possible right-end node:  
     As (fd) (#  q wl) = (1/3) (1) = 1/3,
     this waveform will not satisfy
     the inner-node constraint.

 A possible right-end node:  
     As (fd) (#  q wl) = (1/3) (3) = 1,
     this waveform will satisfy
     the inner-node constraint.  A possible right-end node:  

     As (fd) (#  q wl) = (1/3) (5) = 5/3,
     this waveform will not satisfy
     the inner-node constraint.

    The fractional distance (fd) between the
 top antinode and the one interior node is 1/3.

Call the number of quarter-
     wavelengths "# q wl"

Note:

"L" corresponding
to lowest frequency
(Note: L = (3/4)     )1        "L" corresponding

 to second lowest frequency
       (Note: L = (9/4)     )2

"L" corresponding to third lowest frequency
                 (Note: L = (15/4)     )3

AS FOR THE NUMBERS:

a.)  From the sketch it can be seen that the third lowest frequency
corresponds to a wavelength/beam length ratio that leaves:

L = 6 λ 3
     ⇒    λ 3 = L/6.

Using this with vbeam = λ ν , we get:

ν3 = vbeam/λ 3
     = vbeam/(L/6)
     = 6vbeam/L.

b.)  From the sketch it can be seen that the third lowest frequency
corresponds to a wavelength/string length ratio that leaves:
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L = (25/4)λ 3
     ⇒     λ 3 = 4L/25.

Using this with vstr = λ ν , we get:

ν3 = vstr/λ 3
     = vstr/(4L/25)
     = 25vstr/4L.

c.)  From the sketch it can be seen that the third lowest frequency
corresponds to a wavelength/air-column-length ratio that leaves:

L = (15/4)λ 3
     ⇒     λ 3 = 4L/15.

Using this with vair = λ ν , we get:

ν3 = vair/λ 3
     = vair/(4L/15)
     = 15vair/4L.

We can go a little further with this problem because we know that the
velocity of sound in air is approximately 330 m/s.  Putting that in yields:

ν3 = 15vair/4L
     = 15(330 m/s)/4L
     = 1237.5/L.

NOTE:  The hard part of these problems is finding the appropriate
piece of sine-wave (relating its wavelength to L isn't hard at all).  Make
sure you understand how to do this.  If you are confused, come see me!
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